M.COM 2nd SEMESTER EXAMINATION, 2021

Sub: Operation Research & Computer in Business

Paper: COM 2036

Total marks: 80 Time: 3 hours

GROUP A

1. Answer (any six) from the given questions (word limit 50 to 75 words each)

(5x6=30)

- a) What are the various phases of an Operation Research process?
- b) Define saddle point, pure and mixed strategies with proper examples.
- c) In a game of matching coins with two players A and B, suppose A wins one unit of the value when there are two heads, wins nothing when there are two tails and loses ½ unit of value when there are one head and one tail. Determine the best strategies for each player and the value of the game to A.
- d) Discuss the applications of queuing models in real life business situations.
- e) In a railway marshalling yard, goods trains arrive at a rate of 30 trains per day. Assuming that the inter-arrival time follows an exponential distribution and the service time distribution is also exponential with an average 36minutes. Calculate the following:
 - i) Average numbers of trains the in system.
 - ii) Average waiting time in the queue.
 - iii) Utilization factor
- f) Show how a transportation problem can be considered as an L.P.P.
- g) Determine the optimum allocation of jobs to machines in the given problem.

Jobs	Machines				
	W	X	Y	Z	
A	18	24	28	32	
В	8	13	17	18	
С	10	15	19	22	

(h) Explain the role of Operations Research in business decision making.

2. Answer (any two) from the following questions (word limit 100 to 150 words each) (10x2=20)

- a) Write a note on various assumptions made in M/M/1 queuing model. Also define different operating characteristics of queuing model.
- b) Solve the following problem by using dominance property:

		В			
		B_1	B_2	B_3	B ₃
A	A_1	1	2	-1	2
	A_2	3	1	2	3
	A_3	-1	3	2	1
	A_4	-2	2	0	-3

- c) Find the minimum transportation cost using
- (i) North West Corner Rule
- (ii) Vogel's Approximation Method

Origin/Destination	D1	D2	D3	Supply
01	0	2	1	6
O2	2	1	5	7
O3	2	4	3	7
Demand	5	5	10	20

d) Solve the following LPP using Simplex Method

MinZ =
$$x_2 - 3x_3 + 2x_5$$

subject to
 $3x_2 - x_3 + 2x_5 \le 7$
 $-2x_2 + 4x_3 \le 12$
 $-4x_2 + 3x_3 + 8x_5 \le 10$
 $x_2, x_3, x_5 \ge 0$

GROUP B

1. Answer the following questions:

(Word limit 50 to 75 words for 5 marks questions and 100 to 150 words for 10 marks questions) $\frac{1}{2}$

a) Explain the role of Data Flow Diagram in database design.

OR

	What are the characteristics of a system?	5
b)	What is computer security? Explain its role in E-Commerce.	5
c)	What is Digital signature? Discuss how it works.	
	OR	
	Discuss the elements of a system.	10
d)	What is System Analysis and Design? Discuss its significance in business.	10
